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Criticality and crossover in accessible regimes
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The near-critical behavior ofd= 3)-dimensional Ising-model ferromagnets or simple lattice gases with
equivalent first, second, and third nearest-neighbor interactions is studied through Monte Carlo simulations
using histogram reweighting techniques and comparisons with series expansions. By carefully analyzing nu-
merical data from relatively small finite systems using scaling and extrapolation methods, it is demonstrated
that one can reliably estimate critical exponents, critical temperatures, and universal amplitude ratios, thereby
distinguishing convincingly between different “nearby” universality classes and revealing systematic cross-
over effects. This study is preparatory to extending similar techniques to study criticality in continuum fluid
models lacking symmetries, with Coulomb interactions, etc.

PACS numbgs): 02.70.Lg, 05.50tg, 05.70.Jk, 64.60.Fr

I. INTRODUCTION ity in continuum fluids by numerical simulations a@ the
strongly limited accessible system siz@seasured, say, by
The analysis of near-critical data from Monte Carlo simu-the linear dimensiolh. expressed in units of the microscopic
lations of finite systems has received considerable attentiorepulsive core diametea) constrained botli) by the diffi-
in recent year§1—-9|. Given a series of simulations of, say, a culties of reliably sampling equilibrium distributions, owing
model fluid, one is generally interested in elucidating theto critical slowing down, andii) the needs of storage and
phase diagram and, in particular, in estimating the location ofpeed in handling configurations and computing energies,
the critical point and the associated critical exponents. Aetc., especially when long-range forces dby;the absence,
primary aim then is to identify the appropriate universality in realistic models, of special symmetries, such as displayed
class among those that characterize the spectrum of criticdly simple lattice gases, and the consequent need to study,
behavior; and it may be especially important to clarify thesay, the two-parameter density temperature(@T) plane
possibilities of crossover between different types of critical-and then estimatboth p. and T, rather than simply track-
ity [10-19. ing a single critical locus; and, finally(c) the fact, again
Of notable current interest areontinuumfluid models  arising from lack of symmetry, that the expected asymptotic
suitable for describing real gas-liquid and liquid-liquid criti- thermodynamic scaling properties are both more complex
cal behavior. While it is widely believed that essentially all and less well understood for fluid systems than for lattice-
such systems should belong to tle<(3)-dimensional Ising based models(lt might be remarked that pointsii), (b),
or, equivalently(in the family of O(n) criticality [20,21), and (c) equally hamper series expansion techniq[#3—
the n=1 universality class, the support for that conclusion43].)
from numerical and analytical studies is disappointingly By contrast, for lattice models one can attain much greater
weak amounting, typically, to not much more than the dem+elative system sizek than in continuum systems, and so
onstration of plausibility or consisten¢$,22—27. This fact approach more closely bulk asymptotic critical behavior.
has been especially highlighted in the last few years by th&his is so, in part(i) because effective algorithms for ame-
experimental[28—32 and theoretical que§24-26,33—-38 liorating critical slowing down are availab[é4,45 and (i)
to understand and characterize the nature of criticality in readbecause the demands for storing configurations and comput-
1:1 electrolytes or, theoretically, in the most basic, nonquaning energies, etc., are significantly diminished. The greater
tal ionic or Coulomb system, namely, the so-called ‘“re-range ofL accessible computationally permits the effective
stricted primitive model.” Among the disparate views that use offinite-size scaling techniqu¢g,4,5,46,47 to extrapo-
have been advanced are that ionic criticality should be ofate reliably to the thermodynamic limit,—cc. Thus recent
classical, i.e., mean-field or van der Waals nat(werre- impressive, large-scale studi¢$2—16 have convincingly
sponding tod>4, n=1), or, by contrast, of Ising typeor demonstrated crossover in a lattice gas from Ising to classical
should display crossover from classicalde 3 Ising behav- behavior as the range of interactid®, becomes infinite
ior with a crossover temperatutelose toT;) characterized (relative to the single-site hard-core diameter or lattice spac-
in some way by particular microscopic properties of the sysing a). Even the anticipated universal nature of the
tems in questionf36—38. The possibility of tricritical or asymptotic crossover, specifically as seen in éiffective,

near-tricritical behavior has also been rai$@d,35,37. range-dependent critical exponentses proven amenable to
Similar issues arise in studying phase transitions in moretudy[16].
complex systems such as 2:1 electrolytes, colldig8], To match such an achievement in a continuum model

polymer solutions(where crossover on approach to the lacking a strong symmetry is surely beyond curr@tteven

point has been clearly identified experimentdlh@]), dipo-  foreseeablepossibilities. Nevertheless, we believe that by an

lar and ferrofluids, network-forming and micellar systems. extended, more systematic, and theoretically well-informed
The major difficulties in attacking the problem of critical- study of the finite-size variation of near-critical properties,
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even with only a limited range of sizds significant further this work, the interaction energy between a pair of coupled
progress in understanding criticality in continuum systemsspins is given by-Jss;, whereJ>0 is the strength of the
can be made. This paper represents a first step on the pathitaeraction. The interaction between a spjrand the exter-
that goal. Our aim here is to test a range of finite-size scalingially imposed magnetic fieldd, is —Hs;. Upon defining a
techniques on a “modestly complex,” but relatively well- reduced coupling strength and a reduced magnetic field via
understood problemyithout great expenditure of computa-
tional effort. K=J/kgT, h=H/kgT, 1)

To that end we have chosen to examine the simple-cubic ] N . .
(so lattice gas with equivalent first, first-plus-second, andrespectively, the partition function can be written as
first-plus-second-plus-third  neighbor interactiongand
“trivial” single-site hard coreg—in effect, Ising ferromag- Z(k,h)=Trlexp(—KE+hM)], @
nets with coordination numberg=6 (the standard sc
mode), g= 18, andq=26 [48-50. One can be highly con-
fident that this model belongs to the Ising universality class
for all g<e« [10,20,5]; but our question is: With what de- E= —E SiS;j , 3
gree of precision and conviction can this conclusion actually (ij)
be demonstrated using simulations running up to sizies
=10 to 20? In fact, one knowgl0,51-53 that whenq
—oo (so thatRy— ) the critical behavior becomes classical
and is described precisely by standard mean-field theory
[53]. Furthermore, signs of this crossover are clearly visible, M= 2 S; - (4
and must be dealt with, even foras small as 18 and 26. J

Indeed, an ancillary aim of our study is to exhibit the appear-

ance of these crossover effects outside the immediate critic%}/ (E,'\éw(”s,(s;)p?;tltflfglIy'thZSIdZ[ t‘heed% 2}éﬂ'tmr?ensfg];l Tc’r']rtg?;i_
neighborhood[the latter defined, say, by=(T—TJ)/T, oo ice with equa’ “equiv 'ghbor 1

=0.03], since we anticipate that closely related behavioﬂgzsshﬁlfascgmjgsgué;gotge ;'Srzt Szcolng'air:jdztg';deiczgg'sna'
will be observed in continuum models, such as Lennard-"": ncompassigg o, 1o, 9 :
Histogram reweighting techniquels5] allow one to

Jones systems and the hard-core square-wellfRA®3,26, greatly enhance the information that can be obtained from a

for which system we plan to report detailed results in the?. ; X .
fgture syste e plan to report detailed results esmgle simulation run. According to these procedures, one

Our investigations comprise a series of Monte Carloperformsasimulation at a state poimtd, ho) and stores the
simulations for sizesL/a=6 [54]. The data have been MStantaneous values of the energyand magnetizatiorM,
handled by histogram reweighting techniqugs] that pro- |fn Etﬁ_éor:m fOf a rzlsttogliarr]nfo(Et,l\/tl). ;I'he hlsto%ram
vide requisite flexibility for detailed analysis. The informa- (E.M;K.h) for a state (K,h), not too far away from

tion obtained with the aid of finite-size scaling methods con-{K0.Mo). can be obtained fromiy(E,M) via the simple re-

where the reduced energy, defined by

includes interactions between all coupled pdijs and the
magnetization is

firms that the approach to criticality is governed by |Singscaling
exponents to an apparent precision that excludes the numeri- F(E.M:K.h)
cally closest, well-knownd = 3 universality classes, namely, BN exd — (K=Kg)E+(h—hM],  (5)

n=0, describing self-avoiding walks or polymers, and fo(E,M)
=2 as appropriate foXY or “easy plane” ferromagnets, and

superfluidg20,56.. Van der Waals, mean-field exponents lie without the need to perform any additional simulations.

Eroperties of interest, such as heat capacities, susceptibilities,
etc. can subsequently be obtained in terms of weighted sums

mate of the critical temperaturds, a miscellany of quanti- . .
P 2 yo'd [r moments of the appropriate histogram, e.g.,

ties, such as effective exponents and dimensionless amp
tude ratios, can also be computed. Comparisons with series

expansion dat§48-5(Q (inevitably limited in length forq > X(E,M)f(E,M;K,h)

=18) have also been made: The Monte Carlo datagfor (X) _EM 6)
=18 and 26 prove fully competitive near criticality if not K.h '
actually superior. One can thus, indeed, obtain a very ad- I;A f(E.M;K,h)

equate description of the near-critical description of a “mod- '

estly complex” lattice fluid from numerical simulations in-  Near a critical point properties exhibit finite-size rounding
volving systems of moderate size. We may thus hope th&§ince the growth of the correlation length is limited by the
similar methods, but necessarily developed to allow for lacKinear dimensions of the finite system. Finite-size scaling
of gas-liquid symmetry, will yield comparable results for at theory [46,47), a generalization of the original thermody-

least the simpler continuum fluids. namic scaling concept, is designed to describe the rounding
and shifting effects invariably observed in finite systems.
Il. MODEL SYSTEMS AND METHODOLOGIES Specifically, a propertyY(T) (assuming for simplicityh

=0) that exhibits a power-law type of divergence in the
The well-known Ising model comprises spigjs= =1, lo-  thermodynamic limit so that
cated at the sitgsof a d-dimensional lattice of linear dimen-
sion L. For ferromagnetic systems, which are of interest in Y(T)~t|~®, t=(T=T)/Te, 7
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is, in general, expected to scale as Along these lines, one may invent numerous exponent
_ estimators; but they all appear to be biased in that they are
Y(T)~Le"Y(tLY) (8)  based on some prior knowledge Bf. Consequently, in the

) o ) ) ) present work, we have adopted a rather different route that
in the limit of largeL. Here, v is the universal correlation 55sumes there is a unique, but does not require prior
length exponent for the class of systems in question¥argl  knowledge concerning its value. To this end, consider the
a universal scaling function. Of course, various further corpeak positions, say;(L) andTy(L), for a pair of properties
rections will inevitably show up for small sizes. The scaling Y;(T) andY(T), respectively. By(9) one can write

form (8) typically implies that a diverging quantity will reach

a maximum value of height proportional ks’’”. Moreover, T(L)=T +QL Y+ (11)

the location of the maximum, which may be regarded as an ' ¢ '

effective critical point, sayT{"(L), should vary with the

. for i=] andk. Then by eliminating the true but unknown
system size as

infinite-volume critical temperatur€., one obtains
T (L) = Te(e)~L . 9
_ _ o - ATjp(L)=Tj(L)~T(L)~(Q;— QL . (12
In attempting to determine the infinite-volume critical
temperature using numerical data gained from finite system t this stage, an estimate of independent ofT, can be
A g ) [+
one often determme; the peak positions of the Secof‘d ahtained by, say, considering two distinct linear sizgesand
higher order derivatives of the free energy for a series o and studvi :
: ) 2 ying the ratio
increasing values of and subsequently extrapolates to the
thermodynamic limit according t€9). However, to do this
effectively, the appropriate correlation length exponent _ :ATjk(Lz)%(ﬂ
must be foundor “known™) prior to the extrapolation. Ik ATj(Ly) \Lp
There have been numerous studies that aim to estimate
critical point exponents from numerical data for finite sys-An explicit implementation of this approach, employing a
tems[57]. Early approaches, with relatively limited data, uti- fixed increment,Lz— Ll:AL, and extrapo|ation o4, is

lized the full scaling form(8). Specifically, one represents explained below and illustrated in Fig. 1.
the data in terms of scaled variables by, say, plotitig®’”

vs tLY”, and then adjusts the values of both the exponents
and the critical temperature so that a satisfactory data col- . RESULTS AND DISCUSSION

lapse is attained. In practice, however, this method suffers as indicated, we have performed Monte Carlo simula-
not only from random sampling errors but, more importantly.tions for ferromagnetic Ising models with up to first (
from systematic errors. Experience shows that excellent data 6), second ¢=18), and third §=26) neighbor interac-
collapse can frequently be obtained with significantly erro-ions and for linear sizek from 6 to 20 lattice spacings. All
neous exponents. Indeed, as emphasized by B[Sd8 Eq.  simulations were performed in zero field£0). The total
(8) is an asymptotic expression that is accurate only in th%ngth of each simulation was in the range of (5-2ayf
limit of Iarg_e L it does not allow f_or_ the various COITection ig| spin flips per lattice site depending on the system size.
terms pertaining to small so that fitting to Eq(8) inexora-  (we remark, parenthetically, that we opted to use the tradi-
bly leads to systematic errors unlelsss very large. Inclu-  tional, unsophisticated Metropolis algoritt&¢], rather than
sion of additional correction terms leads to many-parametegogram appropriate cluster algorithifisit, 45, since, on the
nonlinear fits with, in general, unavoidable instabilities andype hand, the former is more readily transferable to nonsym-
strongly coupled uncertainties. _ _metric and off-lattice situations and, on the other hand, we
A somewhat different procedure is based on the behavidfere not aiming for maximal precision and accuracy or very
of the so-called Binder cumulari68] along the symmetry |arge system sizesThe primary output of our simulations
axis (h=0). This parameter is defined by comprised the joint distribution of magnetization and energy,
_ 4 1aga 22 f(E,M), in the form of two-dimensional histograms with
UL=Yo(T)=1=5 (MH(M*) (10 bins of sizeAM=2 and AE=4k (wherek=1 is a small

and approaches well-defined and distinct limits Tor T,  Intéged in accord with(3), (4), ands;==+1.. _
and T<T,, respectively. Owing to the absence of an. The raw datz_i were analyzed through histogram reweight-
L-dependent factor in the appropriate scaling formUer[in ing and the derivatives of the free energy were subsequently
contrast to Eq.(8)], the cumulant is expected to attain a calc_:ula_ted for a large number. of near-critical states._Suph
universal value aT =T, . PlottingU, againstT for a series derivatives can be expressed in terms of the magnetization
of values ofL is thus expected to reveal a common intersec-2Nd energy n:omentsé]M ") and(E™), and the cross mo-
tion point, which then provides an estimateTof. However, ~MeNtS(E™M|["). From these we also calculatéidr h=0)

due to the inextricable presence of correction terms associ® Binder cumulan¥o=U,, as defined in(10), its tem-
ated with smalL, one usually observes a series of somewhapP€rature derivativeY;=(dU, /dT)y_o, Which has a sharp
scattered points instead of a unique intersection: the value dtegative peak, thereby defining the estimaftofl.), and the

T. so determined will then not be very precise. An estimatd®duced heat capacity density

of v may, nevertheless, be obtained by analyzing the cumu-

lant slopes around the intersection points. C=Y,(T)=L KH(EA—(E)?], (14)

v
(13
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FIG. 1. lllustration of the estimation of the inverse correlation
length exponent 1/ for the Ising modela) with q= 18 and(b) with
g=26 equivalent neighbors using the estimatgysdefined in(19).

In this and further figured is measured in units of the lattice
spacinga. The pairs of moment-derived properties used here ar
Y3=X, (see text and Y,=L " 9(d{|M|}/dT),-,. Examination of
other combinations of th¥; mentioned in the text leads to similar
conclusions. The adjustable shift parametelows for additional
finite-size corrections; sg¢&9). The arrows on the ordinate indicate,
from the highest downwards, favored estimates of for n=0
(self-avoiding walkg n=1 (Ising), and n=2 (XY) systems
[20,56]. The values %/=2 and 1 correspond to mean-field theory
and the spherical modeh&«) [10,20,21, respectively.

which peaks aff,(L). It is convenient here and below to
measurel in units of the lattice spacing: thuskgC(T) is
the heat capacity per lattice site.

The behavior of the finite-size susceptibilityy,
=L"9%M?) (h=0) is also of interest; but since this daest

x2(T,h=0)= lim lim L™%a(M)_+,/dh), (16)

h—0t L—o

where the order of limits must be respected.
For similar reasons, we have also examin¥g(T)
=L 4d(|M|)/dT),-, and

;“(e.zvs,m:L*"[<|M|3>—3<|M|><'\/I2>+2<|M|>3],(1

and the fourth order analog
Xa=Ye(T) =L UM = &|M[)(IM[?) + 12M?)(|M[)?
—3(M%)2=6(|M|)"]. (18)

These quantities exhibit two finite-size extreif@ and T; ,
which approachrl; from above(+) and below(—), respec-
tively.

The next task involves the analysis of the peak locations
T;(L) in order to estimate. We did not attempt to us@.3)
directly since the accessible sizes are relatively small and
significant deviations from asymptotic scaling are thus ex-
pected. Such deviations manifest themselves as corrections
to asymptotic power lawgoften called “corrections to scal-
ing”), corrections to the finite-size scaling forni®), and
corrections due to nonlinearities in the scaling “fields’e.,
the variables enterin@)]. Accordingly, we have linearized
(13) for pairs of system sizek;=L andL,=L+AL and
then obtain

(L+e) 1
Yi=(1=Ry) —3—— 7 asL—=, (19

where the adjustable small, fixed “shift” parameterhas
been introduced to provide some account of higher order
L-dependent corrections; notice that 4e) *=L"%(1

&L~ 1+--). The use of such a shift parameter is well es-

tablished in series extrapolation studisge, e.g.[42)]). Its
primary role is to yield a set of different sequences converg-
ing to the limit at different rates and from various directions;
see Fig. 1. In that way one is less likely to be led astray by
some “accidentally good'{apparently simple behavior. Be-
yond that, one should be aware that in exactly soluble finite-
size lattice critical problems, one typically finds the appear-
ance of factorsl(+3), (L—3), (L+1), etc. To this degree,
then, the appearance ofcan be regarded as analogous to an
“analytical background” term as present, say, in a bulk spe-
cific heatCy(T) that diverges at criticality. If one is con-
vinceda priori that the critical behavior is of Ising type, one
might well hope to see a leading correction-to-scaling term
of the formL ~%” with 6/v=0.83, rather than merely * as

display an extremum in the critical region, we have alsoone could regard the implication of includingas in (19).

examined themodifiedor connected susceptibility
Xo=Y3(T) =L~ UM —(IM|)?], (15

in which the first moment of the magnetizatiomagnitude
[M| has been introduced. Recall thafl), =0 whenh=0
for T above or belowT,. For finite L this function has a
sharp maximum afT3(L). However, in the limitL—o~ we
expect thaty,(L;T,h=0) will approach the ‘“zero-field”
susceptibility

The dominance of such a correction term will result, asymp-
totically asL—o, in a “blunting” of the “arrowhead”
formed by a set of plots for different (see Fig. 1 To the
extent that this is not observed in the data the singular cor-
rection term might be judged absent. That, however, would
be a mistake. As indicated, antype correction should al-
ways be present and, numerically, & 1érm will be difficult

to resolve from a 1/°8% term (and from other terms with
exponents not greatly exceeding unityrhis is especially
true for the relatively small values @f accessible in these
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Having demonstrated that the systems under consideration
exhibit Ising behavior, at least as far as the valuevas
concerned, we may proceed to estimate the critical tempera-
ture by extrapolating the peak positioRgL ) in accord with
(9). A composite plot vs 1I(+ &) for the q=26 model is
presented in Fig. 2. It is clear that linear extrapolation allows
one to convincingly estimate the critical temperature.

Table | presents our “moderate-size” estimates dfl/
=kgT./J for the three caseg=6, 18, and 26(using L
<16, =< 20, < 20, respectivelyand compares with estimates
already in the literature. The agreement with the reliably
known precise value for the standard sc Ising modgl (
=6) [59] is encouraging. Our estimates also agree unexpect-
edly well with the values recently obtained by Luijteld] in
his large scale study. However, the agreement with the origi-
nal estimates of Domb and Dalton based on series expan-
sions at high temperaturg49] is relatively poor. This can be

FIG. 2. Critical temperature estimation for the Ising model with attributed to the short length of the series they obtained—one
g=26 equivalent neighbors by extrapolation to infinite size ( could do somewhat better with current computing power but

—o) using a variety of moment criteria. A value of=0.630 is
assumed. The adjustable shift parametes incorporated to par-

a significant effort would be required. In addition, Domb and
Dalton assumed an Ising valye=1.250, known now to be

tially compensate for the higher order finite-size scaling correctionssignificantly too high(by about 0.010 to 0.033 The last
The plots, from the highest downwards, correspond to the propereolumn shows simple Padestimates usingy=1.239 (see

ties Y, for j=1 (e=2), j=6(") (e=—3), =3 (e=1), j=4
(¢=0),j=5) (¢=3), j=2 (¢=0.6), andj=6(") (e=1).

(and typical continuumstudies. Thus the use ef must be

the Appendix. These are closer to the Monte Carlo esti-
mates but still differ significantly. However, the methods of
series analysis used were comparatively unsophisticated
since they did not allow for singular corrections to scaling

rega_rded, essentially, as an aid to ir_1te|_|ige_nt extrapolation:_ that are almost certainly significant fqe= 26. At this point,
optimal” value serves only as an indication of the magni- then, even our moderate-size estimatestfomust be judged

tude of the totality of corrections.
In Fig. 1 we illustrate plots of;, vs 1L for the sc Ising

appreciably more reliable.
Granted reliable estimates ©f(«), other quantities may

models withq =18 andqg=26 neighbor couplings. The latter e gy,died to confirnfor otherwisé the assignment of uni-

represents the most challenging case since it is known thaj,

mean-field(or classical van der Waal®ehavior is attained
when 14— 0 [51-53. In the limit of largeL the data appear
to extrapolate close to the expected Ising value0.63
[56]. Examination of the plots for theg=6 case and for
other pairs of properties(; andY,, leads to similar conclu-
sions. Thus from Fig. (b) we would concluder=0.63
+0.02, which distinguishes theg= 26 system well from self-
avoiding walks withv~0.58 and XY-spin systems withy
~0.67; [56].

rsality class. Valuable properties include effective expo-
nentsand dimensionless amplitude ratios. These allow one
not only to characterize the critical behavior with greater

certainty but also, and significantly, permit exploration of

plausible crossover possibilities. The effective coexistence
curve and susceptibility exponents are defined via logarith-
mic derivatives with respect to the temperature distance from
the critical point as measured by

t'=t/(1+t)=1-T,/T=1-KI/K,, (20

TABLE I. Comparison of estimates for the reduced critical temperaf[];bs:s;kBTc/J=KC’1 for sc Ising
models withq equivalent near-neighbor interactions. The uncertainties quoted refer to the last decimal place.

Monte Carlo simulation

Series expansibns

q This work Luijterf y=1.250¢ y=1.239
6 45112 4.511522¢ 4.5108 451208
18 15.5235 15.522 5712 15.5039 15.51
26 23.235-10 23.2352:2 23.1481 23.18

aSee Ref[14], which employed nonlinear fits to a modified Binder cumulant.

bSeries forgq= 18 and 26 from Domb and Daltdd9].

‘Ratio analysig49] using the estimatey=1.250. See also the Padmalysis of Dalton and Woof50]
yielding closely similar results.

dpadeanalysis assuming=1.239. See the Appendix faj=18 and 26.

®This value agrees well, up to uncertainties in the last decimal place, with estimates from large-scale simu-
lations utilizing multispin flips, etc[4,6].

fSee Liu and Fishef59]. The values quoted there have been interpolated for the assigned yalue
=1.239.
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FIG. 3. Effective susceptibility exponenty (T) for T>T, for FIG. 5. Coexistence curve expongdy (T) for sc Ising models

sc Ising models witty=6, 18, and 26 nearest-neighbor couplings. with q=6, 18, and 26 nearest-neighbor couplings. Lines and points,
The points correspond to data obtained from Monte Carlo simulagtc., have the same meaning as in Figs. 3 and 4.
tions according to the procedure explained in the textl =10;
®, L=16. The arrows indicate the limits for the=0, 1, and 2 =10 andL =16 that extended further towards low and high
gniversality classes in oro_ler of increasing magnitude. The dotte@emperatures. These simulations in no way penetrate the
line represents the mean-field thegoy g =) result. The solid and  agymptotic critical region and finite-size rounding is fully
dasheq curves cqrrespond to Paggroximants constructed from evident. Nevertheless, a6 T. the departures from what
the series expansion data of Domb and co-workés 50 see text o014 he good approximations to the limiting bulk behavior
and Appendix. Note that in order to avoid confusing the plot, theaway from T, are rather sharp; and, ds increases, the
data for the full finite-size crossover that must take place in all Casesbreakoff” pocints quite rapidly a[;)proa'cﬁ' (in Ieading’ or-
whent’—0 have been shown only fay=26. However, the sharp- der. of course. as LM with 1/v~ 1 59) Ci)nsequentl one
ness of the breakawandits shift with increasind., enables one to ’ ' A . y:
extrapolate to large. with reasonable precision down to, say, ;?)Ineez:(:)rr?f?(;’elitfeth'el'hbeuI\k/a?lﬁggvgralgdtowgcffisevggrmgssogr-e
= . Y
002 consistent with the expected Ising values and, taken together,
according to then=0 relations certainly serve to distinguish the appropriate universality
class from then=0 (self-avoiding walkg or n=2 (XY)
Beii (T)=2aIn{|M|)/dIn|t"|, (22) classegeven though the data beloli. for y.«(T) are noisier
and less decisive on their ojn
Yt (T)=—0dInx5/dInt’| (t'=0), (22) One notices, in particular, that for the standagd=@) sc
Ising modelygff (T) approachesy,,-1=1.23 from aboveas
where x,=x»(L;T>T.,h=0) while x, denotes emphasized by Liu and Fishg80]. [The same will be ob-
X2(L;T<T,) as defined in15): see alsq16). served for the nearest-neighbor bcq=(8) and fcc @
In Figs. 3, 4, and 5 we present results fgk;, yo, and ~ =12) Ising latticeg 60].] On the other hand, on extending

Beff- To obtain these, we performed extra simulationslLfor the interaction range the effective SUSCthlblllty eXponent is
seen to approach its limiting value frobelow strongly sug-

1.8 gesting that the amplitude of the first correction-to-scaling
term in y2(T) (in the true asymptotic behavjochanges
sign and, in fact, becomesegativeas the range of interac-

116 tion increases even by a relatively small fadtb4,15. Such

a change is to be expected on intuitive grounds, since, in the

limit of very large g, the effective exponent must approach

vn=1 from a value close to/yer=1<7y,-1 [52,53.

It is also evident from Figs. 3-5 that the full crossover
between classical and Ising near-critical behavior has not
been observed in this work since the valuegistudied are
relatively small, so that the finite systems leave the critical
region before such a crossover can be completed. It is quite
L . striking, nonetheless, that the effective exponents bélgw
: P B e—— R for |t|=0.05 have crossed over by 30 to 40 % of the total
’ T-T UT ’ ’ magnitude already byg=26. The full d=3 asymptotic

¢ crossover phenomenon, however, has been observed only in

FIG. 4. Effective susceptibility exponenty (T) for T<T, for  the recent Monte Carlo work of Luijten and co-workgt@—
sc Ising models witlg=6, 18, and 26 equivalent neighbor interac- 16] (who also examined crossoverdr 2 Ising models with
tions. Lines and points, etc., have the same meaning as in Fig. 3.extended interaction ranges

Yert (1)

1.4
n=2—>{
1—>

1.2
0—>
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It may be worth commenting that the varialileused in 12 T T T T T T T 3
Fig. 3 approaches unity whéh—o. In that limit the effec- o I <« L=10 Xxx)‘x-
tive exponentsy«(T) approach limitsy =1.33,= 1.16,= x2) | e =16 o |
1.12, forq=6, 18, 26, respectively. Crossover to the classi- =] q‘:qu,x |
cal valuey=1 is not seen; nor should it be expected. 8 Lo i

To obtain further insight and, incidentally, as a crosscheck | P _18 an”"_
of the simulations away frori., we have also constructed ,,(rf'* .xq,l.x“’””xwxx’
various Padepproximants using the available series expan- '_,,_4'" paxe “'xx,xﬂ.w*' ]
sion data of Domb and co-worke48—50. Details are pre- _)é::::;:::;;:.x.""*.*w 9=26 ]
sented in the Appendix. The dashed curves in Figs. 3-5 rep- A P
resent simple approximants for the effective exponents Fo® X" ”MFT(q:oo) .
(biased only by the value of ;). The agreement with the S -
“converged” simulation results outside the roundoff region i -
is excellent. These plots also approach value$_.atonsis- 0 : L . L . ! .
tent with Ising exponents to quite reasonable accurddyte 0 0.1 0.2 0.3 0.4
that forq=6 only, series of restricted lengf42] have been IT-T /T
used) By contrast the solid plots in the figures have been - _ _ .
constructed by imposing favored Ising estimateamely 3 FIG. 6. Susceptibility amplitude ratioR,(T)=x (t")/

~0.325, y=1.239[56,59) and allowing explicitly for sin- X2 (—t") for Ising models withg=6, 18, and 26 nearest-neighbor
gular correction-to-scaling factors of the form ‘ﬂ]|t|0 couplings. The arrow indicates the expected universal critical point
+--+) with 6 taken as 0.5461] (but see als§56]); see the ratio for d=3 Ising-type systems. The dashed curves derive from
Appendix. These plots, which aret to be accepted as nu- simple Pad@pproximants: see the Appendix.

merically reliable, serve to give a plausible idea of how the

crossover in the effective exponents should appear in th¥€akly divergent with a relatively small amplitude and a
thermodynamic limit [ — ). large, rapidly varying background contribution through

The information that can be obtained by histogram re159]- Fuythermore, in a finite periodic system it displays a
weighting is by no means limited to effective exponents.large shiftTc(s) —Tc(L)>0. For these reasons, the current
Indeed, dimensionless amplitude ratios constitute exampledmulations are too small in size to examine an analog of Fig.
of quantities that have received relatively little attention in6- Moreover, as illustrated in Fig. 7, quite marked changes in
the past but are valuable because they are expected to ajg!™ arise agjincreases. By plotting against the temperature
proach universal limit§59,62—693. The most accessible of
these, namely the critical susceptibility amplitude ratio, 2.5 P T
which may be defined by

ct . . X5 ()
&= = Im Ry(T) vith RX(T)=ﬁ (23 2

is a strong indicator of universality class. Thus series expan-

sion evidence, renormalization group calculations, and simu-.
lations[59,62—65 indicate that the susceptibility ratio takes -5
a universal value oC*/C™=4.9; in ad=3 Ising (h=1)

system. This is to be contrasted with a classical mean-field
value of C*/C~ =2 [59,62,63 and ad=2 lIsing value of
37.8®...; butnote that the ratio is not defined fao<4 1
whenn#1.

Our simulation data for the susceptibility ratto, (T) are
shown in Fig. 6 together with simple Pagatrapolations:
see the Appendix. Both are quite consistent with Ising be-
havior but certainly inconsistent with the possibility of
mean-field character. Note, however, that for 26 and|t|
=0.05 the effective crossover to the mean-field limit from
the nearest-neighbor behavior is over 40% complete. Never-
theless, much larger simulatioh$4] or much longer series
would be needed to uncover the full crossover for greater
values ofq.

Another critical amplitude ratio of particular theoretical £ 7. Reduced heat capacity per site for sc Ising models with
significance isA*/A", for the specific heats above and be- q—¢, 18, and 26 equivalent neighbor couplings and system sizes
low T.. This is closely correlated with the value of the spe-.=8, 12, and 16 plotted V&' =kgT/qJ. The bulk mean-field heat
cific heat exponeni=0.1Q, (for n=1) since, rather gener- capacity, which is approached wher-=, is shown as a dashed
ally, A"/A~ =1 for a=0(log). However, the specific heat is curve; it vanishes identically above. .

05
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0.4 0.6 0.8 1 1.2
k,T/q]
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scaled by a factog, the crossover to the limiting mean-field 26, only rather short series are availap8—-50, we have
behavior is revealed at least qualitativellf.is also interest- not employed various more sophisticated techniques that
ing to compare with Fig. 7 of Liu and Fish¢b9] which  make optimal allowance for corrections to scaliigee
presents the bulk specific heats for the nearest-neighbor s&3,59).

bcc, and fcc Ising lattices with coordination numbers 6, Accordingly, the entries in the last column in Tablé&dr
8, and 12, respectively. q=18 and 26 were obtained by examininfL/M] Pade
approximants to the high-temperature sefi¢3] (in powers

IV. CONCLUSIONS of K) for [XT(T)]”V for the assigned value oy indicated.

. ] . The dominant zero of the denominator polynomial of each
We have shown that Monte Carlo simulations of *mod- approximant provides an estimate #g=1/T* . The values

erately complex” lattice systems of relatively small size, in qoteq reflect the trends of the rather few near-diagonal ap-
which the critical point is strongly rounded, can through proximants available.

careful, flexible, and systematic finite-size analyses provide The gashed plots for the effective exponents in Figs. 3-5

reliable, unambiguous, and fairly precise characterization ofere obtained by using the high- or low-temperature series

their critical behavior. The essence of our method, takingexpansions for the corresponding quantit{x), in powers
advantage of histogram reweighting, is to examine ey, (<y ), to derive series for the exponent function
rounding and convergence behavior of a variety of distinct

“critical-point indicators” through the whole critical region E(x)
on approach fromall directions: in the present, symmetric

examples that merely means fraahove T, as well as from .
P y t Of course, an estimate fo, must be used here: we took

below While recognizing fully thatany fixed numerical - -
technique will always be defeated by a sufficiently subtle or'c = 4-5114, 15.52, and 23.24 for=6, 18, and 26, respec-

complex problem, we believe our comparative success oljvely. These values differ _slightly from the \_/alues listed in

these “moderately complex” examples provides grounds for! @Pl€ I; however, the precise valuesTf at this level have

optimism that a similar approach will yield significant gains N€dligible consequences for purposes of graphical accuracy.

over previous treatments for nonsymmetric and off-lattice or! "€ [L/M] approximants to the series f&(x) were con-

continuum systems. Primary candidates for study are harcdtructed, defective approximari#3,59 were discarded, and

core square-well fluid$22,23,26: Ising-type critical be- 2 rep'r.esentatlve+appEOX|mant was adopted for each case.

havior can certainly be expected; but the task is to demonSPecifically, foryeg, verr, and Ben We used8/8], [7/6], and

strate that unambiguously and precisely. One needdd/8] for =6, [3/3], [16/16], and[19/19 for q=18, and

furthermore, to discover how to deal more effectively with [2/3], [23/24], and[30/31] for q=26, respectively.

the lack of symmetry inherent in such models and thereby to TO construct the biased approximants depicted in the solid

reveal fully the concomitant mixing of scaling fields and thePlots in Figs. 3—5, in which the preferred value of the expo-

associated implications. It is clear from the present study tha€nt, sayZ, is imposed, we wrote

a systematic attack, in such cases, must not only study the

approach to the critical region from above and below in tem- E(X)={[1+G(X)(xc—Xx) 7], (A2)

perature as a function of system size hlgo, and crucially,

as a function of chemical potential and density as the sizend, accepting §=0.54 [61], derived series for the

changes. Again, it is evident that the information containectorrection-to-scaling amplitude§,(x). Selecting again from

?n the fluctuations in density_and energy can provide primarthe well-behaved approximanfsé/M] to G(x), we chose

|n5|ght beyond that gained in the recent focps on the effecmr Yeir Yert» and Begr (@and displayed in Figs. 338he ap-

tive coexistence curve and its evolution with system siz&yoximants[8/7], [7/7], and[8/9] for q=6, [4/2], [18/17,

[7,8]. In fact, such work is underway and will be reported in anq[22/21] for q=18, and[2/3], [24/24), and[30/3]] for q

due course. The task of definitively clarifying the issue of _ 5 yespectively.

ionic criticality in model electrolytes may then be attacked  The resulting approximants f&(x) cannot be considered

afresh. very sound since a little thought reveals ti@fx) should
have the confluent singularity structure

=—[aInY(x)/dIn(xc—x)]. (A1)
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APPENDIX: SERIES EXTRAPOLATIONS
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then constructed direct Padgeproximants for the amplitude more, the approximants f& ~(x) for =18 and 26 exhibit

functions defined via a rather wide spread in the critical regi@wing, primarily,
to the relatively short series availahleThe approximants
C(X)=(Xc=X)"Y(x), (A4)  chosen[17/17) and[25/24], respectively, represent the aver-

. ~age behavior satisfactorily. Fa& (x) the [3/4] and [2/3]
for Y(x)=x, and x, . As previously, no allowance is approximants proved adequate fqr=18 and 26, respec-
thereby made for confluent correction singularities. Furthertively.

[1] K. Binder, Ferroelectricg3, 43 (1987; Rep. Prog. Physs0, [26] G. Orkoulas and A. Z. Panagiotopoulos, J. Chem. Ph¢§,

783(1987. 1581(1999.
[2] Finite Size Scaling and Numerical Simulations of Statistical[27] S.-N. Lai and M. E. Fisher, Mol. Phy&8, 1373(1996 and

Systemsedited by V. PrivmanWorld Scientific, Singapore, references therein.

1990. [28] R. R. Singh and K. S. Pitzer, J. Chem. Ph98, 6775(1990;
[3] The Monte Carlo Method in Condensed Matter Physéciited K. S. Pitzer, Acc. Chem. Re&3, 333(1990.

by K. Binder (Springer-Verlag, Berlin, 1992 [29] T. Naraynan and K. S. Pitzer, Phys. Rev. LeiB8, 3002
[4] A. M. Ferrenberg and D. P. Landau, Phys. Rev44 5081 (1994; J. Chem. Phys102, 8118(1995.

(1991) [30] M. L. Japas and J. M. H. Levelt Sengers, J. Phys. CHén.

5361 (1990.

[5] K. Chen, A. M. Ferrenberg, and D. P. Landau, J. Appl. Phys.
73, 5488(1993; Phys. Rev. B48, 3249(1993.

[6] H. W. J. Blde, E. Luijten, and J. R. Heringa, J. Phys.28,
6289(1999; A. L. Talapov and H. W. J. Ble, ibid. 29, 5727

(1996. N Chem. Phys110, 3085(1999.
[7] A. D. Bruce and N. B. Wilding, Phys. Rev. Let68, 193 [33] G. Stell, Phys. Rev. A5, 7628(1992.

(1992; N. B. Wilding and A. D. Bruce, J. Phys.: Condens. 341 \1 £ Fisher and Y. Levin, Phys. Rev. Leftl, 3826(1993; J.

[31] K. C. Zhang, M. E. Briggs, R. W. Gammon, and J. M. H.
Levelt Sengers, J. Chem. Phy&7, 8692 (1992; J. M. H.
Levelt Sengers and J. A. Given, Mol. Phyf), 899 (1993.

[32] M. Kleemeier, S. Wiegand, W. Scheg and H. Weingdner, J.

Matter 4, 3087 (1992. Stat. Phys.75, 1 (1994; J. Phys.: Condens. Matt&; 9103
[8] N. B. Wilding, J. Phys.: Condens. Matt8y 585 (1997. (1996.
[9] K. Binder, Rep. Prog. Phy$0, 487 (1997. [35] G. Stell, J. Stat. Phyg8, 197(1995; J. Phys.: Condens. Mat-

[10] P. Seglar and M. E. Fisher, J. Phys1@ 6613(1980; M. E. ter 8, 9329(1996.

Fisher, Phys. Rev. Letb7, 1911(1986. [36] B. P. Lee and M. E. Fisher, Phys. Rev. L&t6, 2906(1996);

[11] K. Binder and H.-P. Deutsch, Europhys. Let8, 667 (1992. M. E. Fisher and B. P. Leébid. 77, 3561(1996.

[12] E. Luijten, H. W. J. Blde, and K. Binder, Phys. Rev. &4, [37] G. Stell, in New Approaches to Problems in Liquid State
4626(1996; Phys. Rev. Lett79, 561(1997); Phys. Rev. 56, Theory edited by C. Caccamo, J.-P. Hansen, and G. Stell,
6540(1997. NATO Science Series C Vol. 52&Kluwer Academic, Dor-

[13] E. Luijten and H. W. J. Blte, Phys. Rev. 56, 8945(1997). drecht, 1999 p. 71.

[14] E. Luijten, Phys. Rev. B9, 4997(1999. [38] A. G. Moreira, M. M. Telo da Gama, and M. E. Fisher, J.

[15] M. A. Anisimov, E. Luijten, V. A. Agayan, J. V. Sengers, and Chem. Phys110 10 058(1999.

K. Binder, Phys. Lett. A264, 63 (1999. [39] See, e.g., R. van Roij, M. Dijkstra, and J.-P. Hansen, Phys.
[16] E. Luijten and K. Binder, Europhys. Le#.7, 311(1999. Rev. E59, 2010(1999; D. Goulding and J.-P. Hansen, New
[17] M. A. Anisimov, A. A. Povodyrev, V. D. Kulikov, and J. V. Approaches to Problems in Liquid State ThetRef.[37]), p.

Sengers, Phys. Rev. Left5, 3146(1995. 321.

[18] A. A. Povodyrev, M. A. Anisimov, J. V. Sengers, and J. M. H. [40] C. Domb, Adv. Phys9, 149 (1960.

Levelt Sengers, Physica 244, 298 (1997). [41] C. Domb and M. F. Sykes, J. Math. Phys.63 (1961).

[19] Y. B. Melnichenko, M. A. Anisimov, A. A. Povodyrev, G. D. [42] M. E. Fisher, Rocky Mt. J. Math4, 181 (1974).
Wignall, J. V. Sengers, and W. A. Van Hook, Phys. Rev. Lett.[43] A. J. Guttmann, irPhase Transitions and Critical Phenomena

79, 5266(1997). edited by C. Domb and J. L. Lebowit&Academic, London,
[20] See, e.g., M. E. Fisher, Rev. Mod. Phys, 597 (1974; in 1989, Vol. 13, p. 1.

Critical Phenomenaedited by F. J. W. Hahne, Lecture Notes [44] R. H. Swendsen and J.-S. Wang, Phys. Rev. L&&. 86

in Physics Vol. 186 Springer-Verlag, Berlin, 1983p. 1. (1987.

[21] H. E. Stanley, inPhase Transitions and Critical Phenomana [45] U. Wolff, Phys. Rev. Lett60, 1461(1988; 62, 361(1989.
edited by C. Domb and M. S. Greecademic, London, [46] M. E. Fisher, inCritical Phenomenaedited by M. S. Green

1974, Vol. 3, Chap. 7. (Academic, New York, 1971 Sec. V, p. 1.
[22] L. Vega, E. de Miguel, L. F. Rull, G. Jackson, and I. A. [47] M. E. Fisher and M. N. Barber, Phys. Rev. Le®8, 1516
McLure, J. Chem. Phys96, 2296 (1992, and references (1972.
therein. [48] N. W. Dalton, Proc. Phys. Soc. Lond@&8, 659 (1966.
[23] E. de Miguel, Phys. Rev. B5, 1347(1997). [49] C. Domb and N. W. Dalton, Proc. Phys. Soc. Lon@&®n 859
[24] J. M. Caillol, D. Levesque, and J. J. Weis, Phys. Rev. L7&tt. (1966.
4039(1996; J. Chem. Physl07, 1565(1997. [50] N. W. Dalton and D. W. Wood, J. Math. Phy&0, 1271

[25] J. P. Valleau and G. Torrie, J. Chem. Phy88 5169(1998. (1969.



PRE 61 CRITICALITY AND CROSSOVER IN ACCESSIBLE REGIMES 5939

[51] D. J. Thouless, Phys. Re%81, 954 (1969. [59] A. J. Liu and M. E. Fisher, Physica A56, 35(1989.

[52] J. L. Lebowitz and O. Penrose, J. Math. Phys98 (1966. [60] A. J. Liu and M. E. Fisher, J. Stat. Phy&8, 431(1990.

[53] See, e.g., C. J. Thompsadviathematical Statistical Mechanics [61] J.-H. Chen, M. E. Fisher, and B. J. Nickel, Phys. Rev. 148t.
(Macmillan, New York, 1972 Secs. 4.4, 4.5, Appendix C. 630(1982.

[54] N. MetrOpO"S, A. W. Rosenbluth, M. N. Rosenbluth, A. H. [62] V. Privman, P. C. Hohenberg, and A. Aharonyﬂhase Tran-
Teller, and E. Teller, J. Chem. Phy&l, 1087(1953. sitions and Critical Phenomenadited by C. Domb and J. L.

[55] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. |Gt Lebowitz (Academic, London, 1991 Vol. 14, p. 1.
2635(1988; 63, 1195(1989. [63] S.-Y. Zinn, S.-N. Lai, and M. E. Fisher, Phys. Rev5g 1176

[56] R. Guida and J. Zinn-Justin, J. Phys.24, 8103(1998. (1996.

[57] See the reviews, Ref$1-3] and especially the more recent
report[9] and references therein.
[58] K. Binder, Z. Phys. B43, 119(1981).

[64] M. E. Fisher and S.-Y. Zinn, J. Phys. 24, L629 (1998.
[65] M. Caselle and M. Hasenbusch, J. Phys3@ 4963(1997).



