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Criticality and crossover in accessible regimes

G. Orkoulas, A. Z. Panagiotopoulos, and Michael E. Fisher
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742-2431

~Received 22 October 1999!

The near-critical behavior of (d53)-dimensional Ising-model ferromagnets or simple lattice gases with
equivalent first, second, and third nearest-neighbor interactions is studied through Monte Carlo simulations
using histogram reweighting techniques and comparisons with series expansions. By carefully analyzing nu-
merical data from relatively small finite systems using scaling and extrapolation methods, it is demonstrated
that one can reliably estimate critical exponents, critical temperatures, and universal amplitude ratios, thereby
distinguishing convincingly between different ‘‘nearby’’ universality classes and revealing systematic cross-
over effects. This study is preparatory to extending similar techniques to study criticality in continuum fluid
models lacking symmetries, with Coulomb interactions, etc.

PACS number~s!: 02.70.Lq, 05.50.1g, 05.70.Jk, 64.60.Fr
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I. INTRODUCTION

The analysis of near-critical data from Monte Carlo sim
lations of finite systems has received considerable atten
in recent years@1–9#. Given a series of simulations of, say,
model fluid, one is generally interested in elucidating t
phase diagram and, in particular, in estimating the location
the critical point and the associated critical exponents
primary aim then is to identify the appropriate universal
class among those that characterize the spectrum of cri
behavior; and it may be especially important to clarify t
possibilities of crossover between different types of critic
ity @10–19#.

Of notable current interest arecontinuumfluid models
suitable for describing real gas-liquid and liquid-liquid cri
cal behavior. While it is widely believed that essentially
such systems should belong to the (d53)-dimensional Ising
or, equivalently~in the family of O(n) criticality @20,21#!,
the n51 universality class, the support for that conclusi
from numerical and analytical studies is disappointing
weak amounting, typically, to not much more than the de
onstration of plausibility or consistency@8,22–27#. This fact
has been especially highlighted in the last few years by
experimental@28–32# and theoretical quest@24–26,33–38#
to understand and characterize the nature of criticality in
1:1 electrolytes or, theoretically, in the most basic, nonqu
tal ionic or Coulomb system, namely, the so-called ‘‘r
stricted primitive model.’’ Among the disparate views th
have been advanced are that ionic criticality should be
classical, i.e., mean-field or van der Waals nature~corre-
sponding tod.4, n51), or, by contrast, of Ising type,or
should display crossover from classical tod53 Ising behav-
ior with a crossover temperature~close toTc) characterized
in some way by particular microscopic properties of the s
tems in question@36–38#. The possibility of tricritical or
near-tricritical behavior has also been raised@34,35,37#.

Similar issues arise in studying phase transitions in m
complex systems such as 2:1 electrolytes, colloids@39#,
polymer solutions~where crossover on approach to theu
point has been clearly identified experimentally@19#!, dipo-
lar and ferrofluids, network-forming and micellar systems

The major difficulties in attacking the problem of critica
PRE 611063-651X/2000/61~5!/5930~10!/$15.00
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ity in continuum fluids by numerical simulations are~a! the
strongly limited accessible system sizes~measured, say, by
the linear dimensionL expressed in units of the microscop
repulsive core diametera! constrained both~i! by the diffi-
culties of reliably sampling equilibrium distributions, owin
to critical slowing down, and~ii ! the needs of storage an
speed in handling configurations and computing energ
etc., especially when long-range forces act;~b! the absence,
in realistic models, of special symmetries, such as displa
by simple lattice gases, and the consequent need to st
say, the two-parameter density temperature or~r,T! plane
and then estimateboth rc andTc , rather than simply track-
ing a single critical locus; and, finally,~c! the fact, again
arising from lack of symmetry, that the expected asympto
thermodynamic scaling properties are both more comp
and less well understood for fluid systems than for latti
based models.~It might be remarked that points~a ii!, ~b!,
and ~c! equally hamper series expansion techniques@40–
43#.!

By contrast, for lattice models one can attain much grea
relative system sizesL than in continuum systems, and s
approach more closely bulk asymptotic critical behavi
This is so, in part,~i! because effective algorithms for am
liorating critical slowing down are available@44,45# and ~ii !
because the demands for storing configurations and com
ing energies, etc., are significantly diminished. The grea
range ofL accessible computationally permits the effecti
use offinite-size scaling techniques@2,4,5,46,47# to extrapo-
late reliably to the thermodynamic limit,L→`. Thus recent
impressive, large-scale studies@12–16# have convincingly
demonstrated crossover in a lattice gas from Ising to class
behavior as the range of interactionR0 becomes infinite
~relative to the single-site hard-core diameter or lattice sp
ing a!. Even the anticipated universal nature of t
asymptotic crossover, specifically as seen in theeffective,
range-dependent critical exponents, has proven amenable t
study @16#.

To match such an achievement in a continuum mo
lacking a strong symmetry is surely beyond current~or even
foreseeable! possibilities. Nevertheless, we believe that by
extended, more systematic, and theoretically well-inform
study of the finite-size variation of near-critical propertie
5930 ©2000 The American Physical Society
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PRE 61 5931CRITICALITY AND CROSSOVER IN ACCESSIBLE REGIMES
even with only a limited range of sizes, L, significant further
progress in understanding criticality in continuum syste
can be made. This paper represents a first step on the pa
that goal. Our aim here is to test a range of finite-size sca
techniques on a ‘‘modestly complex,’’ but relatively wel
understood problem,without great expenditure of computa
tional effort.

To that end we have chosen to examine the simple-cu
~sc! lattice gas with equivalent first, first-plus-second, a
first-plus-second-plus-third neighbor interactions~and
‘‘trivial’’ single-site hard cores!—in effect, Ising ferromag-
nets with coordination numbersq56 ~the standard sc
model!, q518, andq526 @48–50#. One can be highly con
fident that this model belongs to the Ising universality cla
for all q,` @10,20,51#; but our question is: With what de
gree of precision and conviction can this conclusion actu
be demonstrated using simulations running up to sizesL/a
510 to 20? In fact, one knows@10,51–53# that whenq
→` ~so thatR0→`) the critical behavior becomes classic
and is described precisely by standard mean-field the
@53#. Furthermore, signs of this crossover are clearly visib
and must be dealt with, even forq as small as 18 and 26
Indeed, an ancillary aim of our study is to exhibit the appe
ance of these crossover effects outside the immediate cri
neighborhood@the latter defined, say, byt5(T2Tc)/Tc
&0.03], since we anticipate that closely related behav
will be observed in continuum models, such as Lenna
Jones systems and the hard-core square-well fluid@22,23,26#,
for which system we plan to report detailed results in
future.

Our investigations comprise a series of Monte Ca
simulations for sizesL/a>6 @54#. The data have bee
handled by histogram reweighting techniques@55# that pro-
vide requisite flexibility for detailed analysis. The inform
tion obtained with the aid of finite-size scaling methods co
firms that the approach to criticality is governed by Isi
exponents to an apparent precision that excludes the num
cally closest, well-known,d53 universality classes, namely
n50, describing self-avoiding walks or polymers, andn
52 as appropriate forXYor ‘‘easy plane’’ ferromagnets, an
superfluids@20,56#. Van der Waals, mean-field exponents
well outside this range. Having obtained a reasonable e
mate of the critical temperaturesTc , a miscellany of quanti-
ties, such as effective exponents and dimensionless am
tude ratios, can also be computed. Comparisons with se
expansion data@48–50# ~inevitably limited in length forq
>18) have also been made: The Monte Carlo data foq
518 and 26 prove fully competitive near criticality if no
actually superior. One can thus, indeed, obtain a very
equate description of the near-critical description of a ‘‘mo
estly complex’’ lattice fluid from numerical simulations in
volving systems of moderate size. We may thus hope
similar methods, but necessarily developed to allow for la
of gas-liquid symmetry, will yield comparable results for
least the simpler continuum fluids.

II. MODEL SYSTEMS AND METHODOLOGIES

The well-known Ising model comprises spinssj561, lo-
cated at the sitesj of a d-dimensional lattice of linear dimen
sion L. For ferromagnetic systems, which are of interest
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this work, the interaction energy between a pair of coup
spins is given by2Jsisj , whereJ.0 is the strength of the
interaction. The interaction between a spinsj and the exter-
nally imposed magnetic field,H, is 2Hsj . Upon defining a
reduced coupling strength and a reduced magnetic field

K5J/kBT, h5H/kBT, ~1!

respectively, the partition function can be written as

Z~k,h!5Tr @exp~2KE1hM!#, ~2!

where the reduced energy, defined by

E52(̂
i j &

sisj , ~3!

includes interactions between all coupled pairs^ij &, and the
magnetization is

M5(
j

sj . ~4!

We will specifically consider the (d53)-dimensional simple
cubic ~sc! lattice with equal ‘‘equivalent neighbor interac
tions’’ reaching out to the first, second, and third coordin
tion shells and so encompassingq56, 18, and 26 neighbors

Histogram reweighting techniques@55# allow one to
greatly enhance the information that can be obtained fro
single simulation run. According to these procedures, o
performs a simulation at a state point (K0 ,h0) and stores the
instantaneous values of the energy,E, and magnetization,M,
in the form of a histogramf 0(E,M ). The histogram
f (E,M ;K,h) for a state ~K,h!, not too far away from
(K0 ,h0), can be obtained fromf 0(E,M ) via the simple re-
scaling

f ~E,M ;K,h!

f 0~E,M !
}exp@2~K2K0!E1~h2h0!M #, ~5!

without the need to perform any additional simulation
Properties of interest, such as heat capacities, susceptibil
etc. can subsequently be obtained in terms of weighted s
or moments of the appropriate histogram, e.g.,

^X&K,h5

(
E,M

X~E,M ! f ~E,M ;K,h!

(
E,M

f ~E,M ;K,h!

. ~6!

Near a critical point properties exhibit finite-size roundin
since the growth of the correlation length is limited by t
linear dimensions of the finite system. Finite-size scal
theory @46,47#, a generalization of the original thermody
namic scaling concept, is designed to describe the round
and shifting effects invariably observed in finite system
Specifically, a propertyY(T) ~assuming for simplicityh
50) that exhibits a power-law type of divergence in t
thermodynamic limit so that

Y~T!;utu2v, t5~T2Tc!/Tc , ~7!
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5932 PRE 61ORKOULAS, PANAGIOTOPOULOS, AND FISHER
is, in general, expected to scale as

Y~T!'Lv/nỸ~ tL1/n! ~8!

in the limit of largeL. Here,n is the universal correlation
length exponent for the class of systems in question andỸ is
a universal scaling function. Of course, various further c
rections will inevitably show up for small sizes. The scali
form ~8! typically implies that a diverging quantity will reac
a maximum value of height proportional toLv/n. Moreover,
the location of the maximum, which may be regarded as
effective critical point, say,Tc

(Y)(L), should vary with the
system size as

Tc
~Y!~L !2Tc~`!;L21/n. ~9!

In attempting to determine the infinite-volume critic
temperature using numerical data gained from finite syste
one often determines the peak positions of the second
higher order derivatives of the free energy for a series
increasing values ofL and subsequently extrapolates to t
thermodynamic limit according to~9!. However, to do this
effectively, the appropriate correlation length exponenn
must be found~or ‘‘known’’ ! prior to the extrapolation.

There have been numerous studies that aim to estim
critical point exponents from numerical data for finite sy
tems@57#. Early approaches, with relatively limited data, u
lized the full scaling form~8!. Specifically, one represent
the data in terms of scaled variables by, say, plottingY/Lv/n

vs tL1/n, and then adjusts the values of both the expone
and the critical temperature so that a satisfactory data
lapse is attained. In practice, however, this method suf
not only from random sampling errors but, more importan
from systematic errors. Experience shows that excellent
collapse can frequently be obtained with significantly er
neous exponents. Indeed, as emphasized by Binder@3,9#, Eq.
~8! is an asymptotic expression that is accurate only in
limit of large L: it does not allow for the various correctio
terms pertaining to smallL so that fitting to Eq.~8! inexora-
bly leads to systematic errors unlessL is very large. Inclu-
sion of additional correction terms leads to many-param
nonlinear fits with, in general, unavoidable instabilities a
strongly coupled uncertainties.

A somewhat different procedure is based on the beha
of the so-called Binder cumulant@58# along the symmetry
axis (h50). This parameter is defined by

UL[Y0~T!512 1
3 ^M4&/^M2&2 ~10!

and approaches well-defined and distinct limits forT@Tc
and T!Tc, respectively. Owing to the absence of
L-dependent factor in the appropriate scaling form forUL @in
contrast to Eq.~8!#, the cumulant is expected to attain
universal value atT5Tc . PlottingUL againstT for a series
of values ofL is thus expected to reveal a common inters
tion point, which then provides an estimate ofTc . However,
due to the inextricable presence of correction terms ass
ated with smallL, one usually observes a series of somew
scattered points instead of a unique intersection: the valu
Tc so determined will then not be very precise. An estim
of n may, nevertheless, be obtained by analyzing the cu
lant slopes around the intersection points.
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Along these lines, one may invent numerous expon
estimators; but they all appear to be biased in that they
based on some prior knowledge ofTc . Consequently, in the
present work, we have adopted a rather different route
assumes there is a uniqueTc but does not require prio
knowledge concerning its value. To this end, consider
peak positions, sayTj (L) andTk(L), for a pair of properties
Yj (T) andYk(T), respectively. By~9! one can write

Ti~L !5Tc1QiL
21/n1¯ , ~11!

for i 5 j and k. Then by eliminating the true but unknow
infinite-volume critical temperatureTc , one obtains

DTjk~L !5Tj~L !2Tk~L !'~Qj2Qk!L
21/n. ~12!

At this stage, an estimate ofn independent ofTc can be
obtained by, say, considering two distinct linear sizesL1 and
L2 and studying the ratio

Rjk5
DTjk~L2!

DTjk~L1!
'S L1

L2
D 1/n

. ~13!

An explicit implementation of this approach, employing
fixed increment,L22L15DL, and extrapolation onL1 , is
explained below and illustrated in Fig. 1.

III. RESULTS AND DISCUSSION

As indicated, we have performed Monte Carlo simu
tions for ferromagnetic Ising models with up to first (q
56), second (q518), and third (q526) neighbor interac-
tions and for linear sizesL from 6 to 20 lattice spacings. Al
simulations were performed in zero field (h50). The total
length of each simulation was in the range of (5 – 20)3106

trial spin flips per lattice site depending on the system s
~We remark, parenthetically, that we opted to use the tra
tional, unsophisticated Metropolis algorithm@54#, rather than
program appropriate cluster algorithms@44,45#, since, on the
one hand, the former is more readily transferable to nons
metric and off-lattice situations and, on the other hand,
were not aiming for maximal precision and accuracy or ve
large system sizes.! The primary output of our simulation
comprised the joint distribution of magnetization and ener
f (E,M ), in the form of two-dimensional histograms wit
bins of sizeDM52 and DE54k ~where k>1 is a small
integer! in accord with~3!, ~4!, andsj561.

The raw data were analyzed through histogram reweig
ing and the derivatives of the free energy were subseque
calculated for a large number of near-critical states. S
derivatives can be expressed in terms of the magnetiza
and energy moments,^uM un& and ^Em&, and the cross mo-
ments^EmuM un&. From these we also calculated~for h50)
the Binder cumulantY0[UL , as defined in~10!, its tem-
perature derivative,Y1[(dUL /dT)h50, which has a sharp
negative peak, thereby defining the estimatorT1(L), and the
reduced heat capacity density

C[Y2~T!5L2dK2@^E2&2^E&2#, ~14!
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PRE 61 5933CRITICALITY AND CROSSOVER IN ACCESSIBLE REGIMES
which peaks atT2(L). It is convenient here and below t
measureL in units of the lattice spacinga: thus kBC(T) is
the heat capacity per lattice site.

The behavior of the finite-size susceptibilityx2
5L2d^M2& (h50) is also of interest; but since this doesnot
display an extremum in the critical region, we have a
examined themodifiedor connected susceptibility

x̌2[Y3~T!5L2d@^M2&2^uM u&2#, ~15!

in which the first moment of the magnetizationmagnitude
uMu has been introduced. Recall that^M &L[0 whenh50
for T above or belowTc . For finite L this function has a
sharp maximum atT3(L). However, in the limitL→` we
expect thatx̌2(L;T,h50) will approach the ‘‘zero-field’’
susceptibility

FIG. 1. Illustration of the estimation of the inverse correlati
length exponent 1/n for the Ising model~a! with q518 and~b! with
q526 equivalent neighbors using the estimatorsyjk defined in~19!.
In this and further figuresL is measured in units of the lattic
spacinga. The pairs of moment-derived properties used here
Y3[x̌2 ~see text! and Y4[L2d(d^uM u&/dT)h50 . Examination of
other combinations of theYj mentioned in the text leads to simila
conclusions. The adjustable shift parameter« allows for additional
finite-size corrections; see~19!. The arrows on the ordinate indicat
from the highest downwards, favored estimates of 1/n for n50
~self-avoiding walks!, n51 ~Ising!, and n52 (XY) systems
@20,56#. The values 1/n52 and 1 correspond to mean-field theo
and the spherical model (n5`) @10,20,21#, respectively.
o

x2~T,h50![ lim
h→01

lim
L→`

L2d~]^M &L,T,h /]h!, ~16!

where the order of limits must be respected.
For similar reasons, we have also examinedY4(T)

[L2d(d^uM u&/dT)h50 and

x̌3[Y5~T!5L2d@^uM u3&23^uM u&^M2&12^uM u&3#,
~17!

and the fourth order analog

x̌4[Y6~T!5L2d@^M4&24^uM u&^uM u3&112̂ M2&^uM u&2

23^M2&226^uM u&4#. ~18!

These quantities exhibit two finite-size extremaT5
6 andT6

6 ,
which approachTc from above~1! and below~2!, respec-
tively.

The next task involves the analysis of the peak locatio
Tj (L) in order to estimaten. We did not attempt to use~13!
directly since the accessible sizes are relatively small
significant deviations from asymptotic scaling are thus
pected. Such deviations manifest themselves as correc
to asymptotic power laws~often called ‘‘corrections to scal
ing’’ !, corrections to the finite-size scaling forms~8!, and
corrections due to nonlinearities in the scaling ‘‘fields’’@i.e.,
the variables entering~8!#. Accordingly, we have linearized
~13! for pairs of system sizesL15L and L25L1DL and
then obtain

yjk[~12Rjk!
~L1«!

DL
→ 1

n
as L→`, ~19!

where the adjustable small, fixed ‘‘shift’’ parameter« has
been introduced to provide some account of higher or
L-dependent corrections; notice that (L1«)215L21(1
2«L211¯). The use of such a shift parameter is well e
tablished in series extrapolation studies~see, e.g.,@42#!. Its
primary role is to yield a set of different sequences conve
ing to the limit at different rates and from various direction
see Fig. 1. In that way one is less likely to be led astray
some ‘‘accidentally good’’~apparently! simple behavior. Be-
yond that, one should be aware that in exactly soluble fin
size lattice critical problems, one typically finds the appe
ance of factors (L1 1

2 ), (L2 1
2 ), (L11), etc. To this degree

then, the appearance of« can be regarded as analogous to
‘‘analytical background’’ term as present, say, in a bulk sp
cific heat CV(T) that diverges at criticality. If one is con
vinceda priori that the critical behavior is of Ising type, on
might well hope to see a leading correction-to-scaling te
of the formL2u/n with u/n.0.83, rather than merelyL21 as
one could regard the implication of including« as in ~19!.
The dominance of such a correction term will result, asym
totically as L→`, in a ‘‘blunting’’ of the ‘‘arrowhead’’
formed by a set of plots for different« ~see Fig. 1!. To the
extent that this is not observed in the data the singular c
rection term might be judged absent. That, however, wo
be a mistake. As indicated, an«-type correction should al-
ways be present and, numerically, a 1/L term will be difficult
to resolve from a 1/L0.83 term ~and from other terms with
exponents not greatly exceeding unity!. This is especially
true for the relatively small values ofL accessible in these

e
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5934 PRE 61ORKOULAS, PANAGIOTOPOULOS, AND FISHER
~and typical continuum! studies. Thus the use of« must be
regarded, essentially, as an aid to intelligent extrapolation
‘‘optimal’’ value serves only as an indication of the magn
tude of the totality of corrections.

In Fig. 1 we illustrate plots ofyjk vs 1/L for the sc Ising
models withq518 andq526 neighbor couplings. The latte
represents the most challenging case since it is known
mean-field~or classical van der Waals! behavior is attained
when 1/q→0 @51–53#. In the limit of largeL the data appea
to extrapolate close to the expected Ising valuen.0.630
@56#. Examination of the plots for theq56 case and for
other pairs of properties,Yj andYk, leads to similar conclu-
sions. Thus from Fig. 1~b! we would concluden50.63
60.02, which distinguishes theq526 system well from self-
avoiding walks withn'0.588 and XY-spin systems withn
'0.676 @56#.

FIG. 2. Critical temperature estimation for the Ising model w
q526 equivalent neighbors by extrapolation to infinite sizeL
→`) using a variety of moment criteria. A value ofn50.630 is
assumed. The adjustable shift parameter« is incorporated to par-
tially compensate for the higher order finite-size scaling correctio
The plots, from the highest downwards, correspond to the pro
ties Yj for j 51 («52), j 56(1) («52

3
2 ), j 53 («51), j 54

(«50), j 55(2) («5
1
2 ), j 52 («50.6), andj 56(2) («5

1
4 ).
ts

at

Having demonstrated that the systems under considera
exhibit Ising behavior, at least as far as the value ofn is
concerned, we may proceed to estimate the critical temp
ture by extrapolating the peak positionsTj (L) in accord with
~9!. A composite plot vs 1/(L1«)1/n for the q526 model is
presented in Fig. 2. It is clear that linear extrapolation allo
one to convincingly estimate the critical temperature.

Table I presents our ‘‘moderate-size’’ estimates of 1/Kc
5kBTc /J for the three casesq56, 18, and 26~using L
<16,< 20,< 20, respectively! and compares with estimate
already in the literature. The agreement with the relia
known precise value for the standard sc Ising modelq
56) @59# is encouraging. Our estimates also agree unexp
edly well with the values recently obtained by Luijten@14# in
his large scale study. However, the agreement with the or
nal estimates of Domb and Dalton based on series exp
sions at high temperatures@49# is relatively poor. This can be
attributed to the short length of the series they obtained—
could do somewhat better with current computing power
a significant effort would be required. In addition, Domb a
Dalton assumed an Ising valueg51.250, known now to be
significantly too high~by about 0.010 to 0.013!. The last
column shows simple Pade´ estimates usingg51.239 ~see
the Appendix!. These are closer to the Monte Carlo es
mates but still differ significantly. However, the methods
series analysis used were comparatively unsophistic
since they did not allow for singular corrections to scali
that are almost certainly significant forq*26. At this point,
then, even our moderate-size estimates forTc must be judged
appreciably more reliable.

Granted reliable estimates ofTc(`), other quantities may
be studied to confirm~or otherwise! the assignment of uni-
versality class. Valuable properties include effective exp
nentsanddimensionless amplitude ratios. These allow o
not only to characterize the critical behavior with grea
certainty but also, and significantly, permit exploration
plausible crossover possibilities. The effective coexiste
curve and susceptibility exponents are defined via logar
mic derivatives with respect to the temperature distance fr
the critical point as measured by

t8[t/~11t !512Tc /T512K/Kc , ~20!

s.
r-
place.

simu-

lue
TABLE I. Comparison of estimates for the reduced critical temperaturesTc* 5kBTc /J5Kc
21 for sc Ising

models withq equivalent near-neighbor interactions. The uncertainties quoted refer to the last decimal

q

Monte Carlo simulation Series expansionsb

This work Luijtena g51.250c g51.239d

6 4.51162 4.511 5262e 4.5108f 4.512 08f

18 15.52365 15.522 57612 15.5039 15.51
26 23.235610 23.235 262 23.1481 23.18

aSee Ref.@14#, which employed nonlinear fits to a modified Binder cumulant.
bSeries forq518 and 26 from Domb and Dalton@49#.
cRatio analysis@49# using the estimateg51.250. See also the Pade´ analysis of Dalton and Wood@50#
yielding closely similar results.
dPadéanalysis assumingg51.239. See the Appendix forq518 and 26.
eThis value agrees well, up to uncertainties in the last decimal place, with estimates from large-scale
lations utilizing multispin flips, etc.@4,6#.
fSee Liu and Fisher@59#. The values quoted there have been interpolated for the assigned vag
51.239.
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according to theh50 relations

beff ~T!5] ln^uM u&/] lnut8u, ~21!

geff
6 ~T!52] ln x2

6/] lnut8u ~ t8:0!, ~22!

where x2
1[x2(L;T.Tc ,h50) while x2

2 denotes
x̌2(L;T,Tc) as defined in~15!: see also~16!.

In Figs. 3, 4, and 5 we present results forgeff
1 , geff

2 , and
beff . To obtain these, we performed extra simulations foL

FIG. 3. Effective susceptibility exponentgeff
1 (T) for T.Tc for

sc Ising models withq56, 18, and 26 nearest-neighbor coupling
The points correspond to data obtained from Monte Carlo sim
tions according to the procedure explained in the text:3, L510;
d, L516. The arrows indicate the limits for then50, 1, and 2
universality classes in order of increasing magnitude. The do
line represents the mean-field theory~or q5`) result. The solid and
dashed curves correspond to Pade´ approximants constructed from
the series expansion data of Domb and co-workers@48–50#; see text
and Appendix. Note that in order to avoid confusing the plot,
data for the full finite-size crossover that must take place in all ca
whent8→0 have been shown only forq526. However, the sharp
ness of the breakawayand its shift with increasingL, enables one to
extrapolate to largeL with reasonable precision down to, say,t8
.0.02.

FIG. 4. Effective susceptibility exponentgeff
2 (T) for T,Tc for

sc Ising models withq56, 18, and 26 equivalent neighbor intera
tions. Lines and points, etc., have the same meaning as in Fig
510 andL516 that extended further towards low and hig
temperatures. These simulations in no way penetrate
asymptotic critical region and finite-size rounding is ful
evident. Nevertheless, asT→Tc the departures from wha
should be good approximations to the limiting bulk behav
away from Tc are rather sharp; and, asL increases, the
‘‘breakoff’’ points quite rapidly approachTc ~in leading or-
der, of course, as 1/L1/n with 1/n.1.59). Consequently, one
can extrapolate the bulk behavior in towardsTc with reason-
able confidence. The values ofb and g so estimated are
consistent with the expected Ising values and, taken toge
certainly serve to distinguish the appropriate universa
class from then50 ~self-avoiding walks! or n52 (XY)
classes„even though the data belowTc for geff

2 (T) are noisier
and less decisive on their own….

One notices, in particular, that for the standard (q56) sc
Ising modelgeff

1 (T) approachesgn51.1.239 from aboveas
emphasized by Liu and Fisher@60#. †The same will be ob-
served for the nearest-neighbor bcc (q58) and fcc (q
512) Ising lattices@60#.‡ On the other hand, on extendin
the interaction range the effective susceptibility exponen
seen to approach its limiting value frombelow, strongly sug-
gesting that the amplitude of the first correction-to-scal
term in geff

1 (T) ~in the true asymptotic behavior! changes
sign and, in fact, becomesnegativeas the range of interac
tion increases even by a relatively small factor@14,15#. Such
a change is to be expected on intuitive grounds, since, in
limit of very large q, the effective exponent must approac
gn51 from a value close togMFT51,gn51 @52,53#.

It is also evident from Figs. 3–5 that the full crossov
between classical and Ising near-critical behavior has
been observed in this work since the values ofq studied are
relatively small, so that the finite systems leave the criti
region before such a crossover can be completed. It is q
striking, nonetheless, that the effective exponents belowTc
for utu*0.05 have crossed over by 30 to 40 % of the to
magnitude already byq526. The full d53 asymptotic
crossover phenomenon, however, has been observed on
the recent Monte Carlo work of Luijten and co-workers@12–
16# ~who also examined crossover ind52 Ising models with
extended interaction ranges!.

.
-

d

e
es

.

FIG. 5. Coexistence curve exponentbeff (T) for sc Ising models
with q56, 18, and 26 nearest-neighbor couplings. Lines and poi
etc., have the same meaning as in Figs. 3 and 4.
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It may be worth commenting that the variablet8 used in
Fig. 3 approaches unity whenT→`. In that limit the effec-
tive exponentsgeff

1 (T) approach limitsg`
1.1.33,. 1.16,.

1.12, forq56, 18, 26, respectively. Crossover to the clas
cal valueg51 is not seen; nor should it be expected.

To obtain further insight and, incidentally, as a crossch
of the simulations away fromTc , we have also constructe
various Pade´ approximants using the available series exp
sion data of Domb and co-workers@48–50#. Details are pre-
sented in the Appendix. The dashed curves in Figs. 3–5
resent simple approximants for the effective expone
~biased only by the value ofTc). The agreement with the
‘‘converged’’ simulation results outside the roundoff regio
is excellent. These plots also approach values atTc consis-
tent with Ising exponents to quite reasonable accuracy.~Note
that forq56 only, series of restricted length@42# have been
used.! By contrast the solid plots in the figures have be
constructed by imposing favored Ising estimates~namelyb
.0.325,g.1.239 @56,59#! and allowing explicitly for sin-
gular correction-to-scaling factors of the form (11gutuu
1¯) with u taken as 0.54@61# ~but see also@56#!; see the
Appendix. These plots, which arenot to be accepted as nu
merically reliable, serve to give a plausible idea of how t
crossover in the effective exponents should appear in
thermodynamic limit (L→`).

The information that can be obtained by histogram
weighting is by no means limited to effective exponen
Indeed, dimensionless amplitude ratios constitute exam
of quantities that have received relatively little attention
the past but are valuable because they are expected to
proach universal limits@59,62–65#. The most accessible o
these, namely the critical susceptibility amplitude rat
which may be defined by

C1

C2 5 lim
T→Tc

Rx~T! with Rx~T!5
x2

1~ t8!

x2
2~2t8!

~23!

is a strong indicator of universality class. Thus series exp
sion evidence, renormalization group calculations, and si
lations @59,62–65# indicate that the susceptibility ratio take
a universal value ofC1/C2.4.95 in a d53 Ising (n51)
system. This is to be contrasted with a classical mean-fi
value of C1/C252 @59,62,63# and ad52 Ising value of
37.69 . . . ; but note that the ratio is not defined ford<4
whennÞ1.

Our simulation data for the susceptibility ratioRx(T) are
shown in Fig. 6 together with simple Pade´ extrapolations:
see the Appendix. Both are quite consistent with Ising
havior but certainly inconsistent with the possibility
mean-field character. Note, however, that forq526 andutu
*0.05 the effective crossover to the mean-field limit fro
the nearest-neighbor behavior is over 40% complete. Ne
theless, much larger simulations@14# or much longer series
would be needed to uncover the full crossover for grea
values ofq.

Another critical amplitude ratio of particular theoretic
significance isA1/A2, for the specific heats above and b
low Tc . This is closely correlated with the value of the sp
cific heat exponenta.0.109 ~for n51) since, rather gener
ally, A1/A251 for a50(log). However, the specific heat
-
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weakly divergent with a relatively small amplitude and
large, rapidly varying background contribution throughTc
@59#. Furthermore, in a finite periodic system it displays
large shiftTc(`)2Tc(L).0. For these reasons, the curre
simulations are too small in size to examine an analog of F
6. Moreover, as illustrated in Fig. 7, quite marked change
form arise asq increases. By plotting against the temperatu

FIG. 6. Susceptibility amplitude ratioRx(T)5x2
1(t8)/

x2
2(2t8) for Ising models withq56, 18, and 26 nearest-neighbo

couplings. The arrow indicates the expected universal critical p
ratio for d53 Ising-type systems. The dashed curves derive fr
simple Pade´ approximants: see the Appendix.

FIG. 7. Reduced heat capacity per site for sc Ising models w
q56, 18, and 26 equivalent neighbor couplings and system s
L58, 12, and 16 plotted vsT↑5kBT/qJ. The bulk mean-field hea
capacity, which is approached whenq→`, is shown as a dashe
curve; it vanishes identically aboveTc .
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scaled by a factorq, the crossover to the limiting mean-fiel
behavior is revealed at least qualitatively.~It is also interest-
ing to compare with Fig. 7 of Liu and Fisher@59# which
presents the bulk specific heats for the nearest-neighbo
bcc, and fcc Ising lattices with coordination numbersq56,
8, and 12, respectively.!

IV. CONCLUSIONS

We have shown that Monte Carlo simulations of ‘‘mo
erately complex’’ lattice systems of relatively small size,
which the critical point is strongly rounded, can throu
careful, flexible, and systematic finite-size analyses prov
reliable, unambiguous, and fairly precise characterization
their critical behavior. The essence of our method, tak
advantage of histogram reweighting, is to examine
rounding and convergence behavior of a variety of disti
‘‘critical-point indicators’’ through the whole critical region
on approach fromall directions: in the present, symmetr
examples that merely means fromabove Tc as well as from
below. While recognizing fully thatany fixed numerical
technique will always be defeated by a sufficiently subtle
complex problem, we believe our comparative success
these ‘‘moderately complex’’ examples provides grounds
optimism that a similar approach will yield significant gai
over previous treatments for nonsymmetric and off-lattice
continuum systems. Primary candidates for study are h
core square-well fluids@22,23,26#: Ising-type critical be-
havior can certainly be expected; but the task is to dem
strate that unambiguously and precisely. One nee
furthermore, to discover how to deal more effectively w
the lack of symmetry inherent in such models and thereb
reveal fully the concomitant mixing of scaling fields and t
associated implications. It is clear from the present study
a systematic attack, in such cases, must not only study
approach to the critical region from above and below in te
perature as a function of system size butalso, and crucially,
as a function of chemical potential and density as the s
changes. Again, it is evident that the information contain
in the fluctuations in density and energy can provide prim
insight beyond that gained in the recent focus on the ef
tive coexistence curve and its evolution with system s
@7,8#. In fact, such work is underway and will be reported
due course. The task of definitively clarifying the issue
ionic criticality in model electrolytes may then be attack
afresh.
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APPENDIX: SERIES EXTRAPOLATIONS

In the interest of completeness we present here brief
tails of the series extrapolation methods employed. Since
primary aim was to provide only semiquantitative compa
sons with our simulation results and because, forq518 and
sc,
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26, only rather short series are available@48–50#, we have
not employed various more sophisticated techniques
make optimal allowance for corrections to scaling~see
@43,59#!.

Accordingly, the entries in the last column in Table I~for
q518 and 26! were obtained by examining@L/M # Padé
approximants to the high-temperature series@49# ~in powers
of K! for @xT(T)#1/g for the assigned value ofg indicated.
The dominant zero of the denominator polynomial of ea
approximant provides an estimate forKc51/Tc* . The values
quoted reflect the trends of the rather few near-diagonal
proximants available.

The dashed plots for the effective exponents in Figs. 3
were obtained by using the high- or low-temperature se
expansions for the corresponding quantityY(x), in powers
of x(<xc), to derive series for the exponent function

E~x!52@] ln Y~x!/] ln~xc2x!#. ~A1!

Of course, an estimate forxc must be used here: we too
Tc* 54.5114, 15.52, and 23.24 forq56, 18, and 26, respec
tively. These values differ slightly from the values listed
Table I; however, the precise values ofTc at this level have
negligible consequences for purposes of graphical accur
The @L/M # approximants to the series forE(x) were con-
structed, defective approximants@43,59# were discarded, and
a representative approximant was adopted for each c
Specifically, forgeff

1 , geff
2 , andbeff we used@8/8#, @7/6#, and

@9/8# for q56, @3/3#, @16/16#, and @19/19# for q518, and
@2/3#, @23/24#, and@30/31# for q526, respectively.

To construct the biased approximants depicted in the s
plots in Figs. 3–5, in which the preferred value of the exp
nent, sayz, is imposed, we wrote

E~x!5z@11G~x!~xc2x!u#, ~A2!

and, accepting u50.54 @61#, derived series for the
correction-to-scaling amplitudes,G(x). Selecting again from
the well-behaved approximants@L/M # to G(x), we chose
for geff

1 , geff
2 , andbeff ~and displayed in Figs. 3–5! the ap-

proximants@8/7#, @7/7#, and @8/9# for q56, @4/2#, @18/17#,
and @22/21# for q518, and@2/3#, @24/24#, and@30/31# for q
526, respectively.

The resulting approximants forE(x) cannot be considered
very sound since a little thought reveals thatG(x) should
have the confluent singularity structure

G~x!5Gc1G12u ~xc2x!12u1G1~xc2x!1¯ ,
~A3!

with 12u,1. Such a functioncannotbe well represented in
the critical region by a direct@L/M # Padéapproximant. Bet-
ter results should be obtainable by usingdifferential approxi-
mants @K;L/M # ~see @59,43#!, since these can represent
form such as~A3! exactlywhen the higher order terms enta
only the powers (xc2x)k2u and (xc2x)k for k52,3, . . . .
For the present purposes, however, this refinement was
worthwhile.

Finally, for the amplitude ratio plots in Fig. 7, we ac
ceptedg51.239 and the values ofTc* specified above, and
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then constructed direct Pade´ approximants for the amplitud
functions defined via

C~x!5~xc2x!gY~x!, ~A4!

for Y(x)5x2
1 and x2

2 . As previously, no allowance is
thereby made for confluent correction singularities. Furth
ca
,

ys

s.

d

.

.
tt

s

a

.

r-

more, the approximants forC2(x) for q518 and 26 exhibit
a rather wide spread in the critical region~owing, primarily,
to the relatively short series available!. The approximants
chosen,@17/17# and@25/24#, respectively, represent the ave
age behavior satisfactorily. ForC1(x) the @3/4# and @2/3#
approximants proved adequate forq518 and 26, respec
tively.
.
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